МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский ядерный университет «МИФИ»

Трехгорный технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (ТТИ НИЯV МИФИ)

УТВЕРЖДАЮ Директор ТТИ НИЯУ МИФИ ______ Т.И. Улитина «26» июня 2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ «ФИЗИЧЕСКИЕ ОСНОВЫ ЯДЕРНОГО ПРИБОРОСТРОЕНИЯ»

Направление подготовки: 11.03.03 Конструирование и технология электронных средств

Профиль подготовки: Проектирование и технология радиоэлектронных средств

Квалификация (степень) выпускника: бакалавр

Форма обучения: очная

1 ЦЕЛИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Дисциплина посвящена изучению методов детектирования ионизирующих излучений, сравнительному анализу основных измерительных характеристик детекторов, рассмотрению их конструктивных, технологических и эксплуатационных особенностей, а также выбору оптимального типа детектора для решения конкретных практических задач.

1.1 Цели дисциплины

Изучить методы детектирования ионизирующих излучений, научить студентов сравнительному анализу основных измерительных характеристик детекторов, рассмотреть их конструктивные, технологические и эксплуатационные особенности, а также освоить особенности выбора оптимального типа детектора для решения конкретных практических задач.

1.2 Задачи дисциплины

- изучение принципов регистрации ионизирующих излучений;
- изучение конструктивных особенностей и характеристик различных детекторов;
- освоение методов обработки информации, поступающей с различных детекторов.

2 МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина «Физические основы ядерного приборостроения» относится к вариативной части дисциплин по выбору учебного плана.

3 КОМПЕТЕНЦИИ СТУДЕНТА, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ / ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ ОБРАЗОВАНИЯ И КОМПЕТЕНЦИИ СТУДЕНТА ПО ЗАВЕРШЕНИИ ОСВОЕНИЯ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1 Общепрофессиональные и профессиональные компетенции

Изучение дисциплины «Физические основы ядерного приборостроения» направлено на формирование у студентов следующих компетенций:

общепрофессиональные (ОПК):

– способен использовать положения, законы и методы естественных наук и математики
 для решения задач инженерной деятельности (ОПК-1);

профессиональные (ПК):

- способен подготавливать и тестировать компоненты радиоэлектронных средств (ПК-2.1);
- способен обеспечивать эксплуатацию средств измерений, систем автоматики, аппаратуры систем управления и защиты на атомных станциях (ПК-2.6);
- способен организовывать и проводить диагностику технического состояния, проверки работоспособности оборудования контрольно-измерительных приборов и автоматики, аппаратуры систем управления и защиты (ПК-2.7).

3.2 Перечень результатов образования, формируемых дисциплиной, с указанием уровня их освоения

В результате изучения дисциплины студент должен:

знать:

- фундаментальные законы природы и основные физические и математические законы;
- принципы работы и устройство контрольно-измерительного оборудования,
 применяемого для контроля параметров компонентов радиоэлектронных средств,

требования к хранению компонентов, технические требования пригодности компонентов, установленные производителем (поставщиком), требования законодательства Российской Федерации, технических регламентов, сводов, правил, стандартов в области испытания, технический английский язык в области микро- и наноэлектроники;

- назначение, принципы действия, параметры, алгоритмы работы измерительного оборудования И оборудования систем управления, регламенты, должностные инструкции, программы, инструкции выполнения работ по диагностике и проверке измерений, работоспособности средств систем аппаратуры автоматики, систем управления и защиты;
- регламенты и технологии технического обслуживания и ремонта технических средств контрольно-измерительных приборов и автоматики, аппаратуры систем управления и защиты.

уметь:

- применять физические законы и математические методы для решения задач теоретического и прикладного характера;
- работать на контрольно-измерительном оборудовании, применяемом для контроля параметров компонентов радиоэлектронных средств, выявлять брак компонентов по внешнему виду;
- уметь анализировать, составлять и корректировать функциональные, структурные и принципиальные электрические схемы измерительной аппаратуры, средств измерений, систем автоматики, выполнять пусконаладочные работы, измерения параметров при регулировках и испытаниях оборудования;
- выполнять штатные процедуры технического обслуживания и ремонта технических средств контрольно-измерительных приборов и автоматики, аппаратуры систем управления и защиты.

владеть:

- навыками использования знаний естественных наук и математики при решении практических задач инженерной деятельности;
- навыками оформления отчетной документации о выполняемых работах, работы с базами данных и классификаторами контрольных нормативов;

- навыками метрологической поверки и паспортизации средств измерений и систем автоматики, проведения испытаний и настройки вводимого в эксплуатацию оборудования контрольно-измерительных приборов и автоматики, аппаратуры систем управления и защиты;
- навыками организации и контроля проведения профилактических осмотров,
 текущего и планово-предупредительного ремонта средств измерений, систем автоматики, аппаратуры систем управления и защиты, работ по устранению дефектов.

3.3 Воспитательная работа

Направление/	Создание условий,	Использование воспитательного					
цели	обеспечивающих потенциала учебных дисциплин						
	Профессионал						
Профессиональное	- формирование чувства						
воспитание	личной ответственности	потенциала дисциплин профессионального					
	за научно-	модуля для формирования чувства личной					
	технологическое	ответственности за достижение лидерства					
	развитие России, за	России в ведущих научно-технических					
	результаты	секторах и фундаментальных исследованиях,					
	исследований и их	обеспечивающих ее экономическое развитие					
	последствия (В17)	и внешнюю безопасность, посредством					
		контекстного обучения, обсуждения					
		социальной и практической значимости					
		результатов научных исследований и					
		технологических разработок.					
		2.Использование воспитательного					
		потенциала дисциплин профессионального					
		модуля для формирования социальной					
		ответственности ученого за результаты					
		исследований и их последствия, развития					
		исследовательских качеств посредством					
		выполнения учебно-исследовательских					
		заданий, ориентированных на изучение и					
		проверку научных фактов, критический					
		анализ публикаций в профессиональной					
		области, вовлечения в реальные					
		междисциплинарные научно-					
		исследовательские проекты.					
	- формирование	Использование воспитательного потенциала					
	ответственности за	дисциплин профессионального модуля для					
	профессиональный	формирования у студентов ответственности					
	выбор,	за свое профессиональное развитие					
	профессиональное	посредством выбора студентами					
	развитие и	индивидуальных образовательных					
	профессиональные	траекторий, организации системы общения					
	решения (В18)	между всеми участниками образовательного					
		процесса, в том числе с использованием					
		новых информационных технологий.					
	- формирование	1.Использование воспитательного					
	научного	потенциала дисциплин/практик "Основы					
	мировоззрения,	научных исследований", «"Учебная практика					

культуры поиска нестандартных научнотехнических/практических решений, критического отнопления исследованиям лженаучного толка (B19)

(получение первичных научнонавыков исследовательской работы)" понимания формирования основных принципов и способов научного познания мира, развития исследовательских качеств студентов посредством их вовлечения в исследовательские проекты областям ПО

работа

(научно-исследовательская

научных исследований. 2.Использование воспитательного потенциала дисциплин/практик "Введение в специальность", "Основы исследований", "Учебная практика (научноработа исследовательская первичных навыков работы)" исследовательской способности формирования настоящие научные исследования лженаучных посредством проведения студентами занятий и регулярных бесед; - формирования критического мышления, умения рассматривать исследования экспертной c co посредством обсуждения современных исследований, исторических предпосылок появления

научных (получение научнодля: отделять OT различные позиции студентами тех или иных открытий и теорий.

- формирование навыков коммуникации, командной работы лидерства **(В20)**;
- формирование способности стремления следовать в профессии нормам поведения, обеспечивающим нравственный характер трудовой деятельности неслужебного поведения (В21);
- формирование творческого инженерного/профессионального мышления. организации навыков коллективной проектной деятельности (B22)
- 1.Использование воспитательного потенциала дисциплин профессионального модуля для развития навыков коммуникации, командной работы и лидерства, творческого инженерного мышления, стремления следовать в профессиональной деятельности поведения, обеспечивающим нормам нравственный характер трудовой деятельности и неслужебного поведения, ответственности за принятые решения через подготовку групповых курсовых работ и практических заданий, решение кейсов, прохождение практик и подготовку ВКР. 2.Использование воспитательного
- потенциала дисциплин профессионального модуля для: формирования производственного
- коллективизма в ходе совместного решения как модельных, так и практических задач, а также путем подкрепление рациональнотехнологических навыков взаимодействия в проектной деятельности эмошиональным эффектом успешного взаимодействия, ощущением роста общей эффективности при распределении проектных задач соответствии C сильными компетентностными И эмоциональными свойствами членов проектной группы.

формирование культуры

Использование воспитательного потенциала дисциплин профессионального модуля для

	_				
информационной	формирования базовых навыков				
безопасности (В23)	информационной безопасности через				
	изучение последствий халатного отношения к				
	работе с информационными системами,				
	базами данных (включая персональные				
	данные), приемах и методах				
	злоумышленников, потенциальном уров				
	пользователям.				
УГНС 11.00.00	1. Использование воспитательного				
«Электроника,	потенциала профильных дисциплин "Основы				
радиотехника и	конструирования электронных средств",				
системы связи»:	"Схемо- и системотехника электронных				
- формирование	средств", "Технология производства				
навыков коммуникации	электронных средств", "Конструирование				
и командной работы при	механизмов и несущих конструкций				
разработке электронных	радиоэлектронных средств",				
средств (В27);	"Конструирование деталей и узлов				
- формирование	радиоэлектронных средств» для				
культуры безопасности	формирования профессиональной				
при работе в	коммуникации, а также привития навыков				
электромонтажной и	командной работы за счет использования				
электрорадиомонтажной	методов коллективных форм познавательной				
лаборатории (В28)	деятельности, командного выполнения				
	учебных заданий по разработке электронных				
	средств, курсовых работ/проектов и защиты				
	их результатов;				
	2. Использование воспитательного				
	потенциала учебной практики и профильной				
	дисциплины "Технология поверхностного				
	монтажа" для формирования культуры				
	безопасности при работе в электромонтажной				
	и электрорадиомонтажной лаборатории через				
	выполнение студентами практических				
	заданий.				

4 СОДЕРЖАНИЕ И СТРУКТУРА ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины в 6 семестре составляет 2 зачетные единицы, 72 часа.

№ п/	Раздел учебной	ной Н	Виды учебной деятельности, включая самостоятельную работу студентов и трудоемкость (в часах)				Текущий контроль успеваемости (неделя,	Аттестация раздела (неделя,	Макс. балл за раздел*	
	дисциплины		Лекции	Лаб. работы	Прак. работы	Самост. работа	форма)	форма)		
	Семестр 6									
1	Раздел 1	1-4	6	-	6	4	Д31	T1	10	

2	Раздел 2	5-8	6	-	6	4	Д32	KP1	15
3	Раздел 3	9-12	6	-	6	4	Д33	T2	10
4	Раздел 4	13-18	10	-	8	6	T3	KP2	15
Итого			28	-	26	18			50
Заче	Зачет с оценкой							50	
Итого за семестр								100	

4.1 Содержание лекций

Раздел 1. Характеристики и режимы работы детекторов.

Общая схема включения детектора. Токовый и импульсный режимы работы детекторов. Амплитудный спектр импульсов. Функция отклика детектора. Энергетическое разрешение детектора. Эффективность регистрации излучений. Временное разрешение детекторов, мертвое время.

Раздел 2. Газовые ионизационные детекторы.

- 3.1. Ионизационный эффект в газах, вольтамперная характеристика газового промежутка. Теорема Рамо Шокли. Ионизационные камеры (ИК). Устройство и особенности работы в токовом и импульсном режимах. Импульсная ИК, схема ее включения. Форма импульсов тока и напряжения в для плоской ИК. Индукционный эффект и способы его уменьшения. Энергетические и временные характеристики импульсной ИК. Области применения и примеры использования.
- 3.2. Пропорциональный счетчик (ПС), особенности его устройства и работы. Форма импульсов тока и напряжения в ПС. Временное и энергетическое разрешение ПС. Области применения и примеры использования.
- 3.3. Газоразрядные счетчики (ГС), их разновидности. Вторичные эффекты. Полный коэффициент газового усиления, механизм разряда. Особенности галогенных счетчиков. Временные характеристики, эффективность регистрации различных видов излучений.
- 3.4. Конструктивные особенности газовых ионизационных детекторов: охранные кольца, 2п и 4п геометрия, коррекция поля в месте крепления нити анода и т.п.

Раздел 3. Твердотельные (полупроводниковые) детекторы.

- 4.1. Механизм регистрации излучений, требования к материалу детектора. Однородные счетчики, их преимущества и недостатки.
- 4.2. Полупроводниковые детекторы на основе р-п перехода. Поверхностно-баръерные и диффузионные детекторы, схема их включения и технологические особенности. Толщина и емкость чувствительной области. Форма импульсов тока и напряжения. Основные факторы, определяющие энергетическое и временное разрешение детекторов. Области применения и примеры использования.
- 4.3. Полупроводниковые диффузионно дрейфовые детекторы (р-і-п детекторы). Схема включения, технологические особенности. Форма импульсов тока и напряжения. Энергетическое и временное разрешение. Эффективность регистрации различных типов излучений.
- 4.4. Некоторые разновидности полупроводниковых детекторов: из сверхчистых материалов, на основе теллурида кадмия, арсенида галлия, диодида ртути и т.п. Области применения и примеры использования.

Раздел 4. Сцинтилляционные детекторы (СС).

Структура, принцип работы и основные характеристики СС. Сцинтилляторы, механизм высвечивания неорганических и органических сцинтилляторов. Фотоэлектронный умножитель (ФЭУ), его составные части, конструктивные особенности и характеристики. Схема включения и питания ФЭУ. Шумы ФЭУ. Одноэлектронный режим работы ФЭУ. Форма сцинтилляционных импульсов тока и напряжения. Временное и энергетическое разрешение СС. Эффективность регистрации различных видов излучений. Области применения и примеры использования.

4.2Тематический план практических работ

- 1. Аппаратура для работы с детекторами, программное обеспечение.
- 2. Галогенный газоразрядный счётчик.
- 3. Газовый пропорциональный счётчик.
- 4. Поверхностно-барьерный детектор (р-п типа).
- 5. Детектор из сверхчистого германия.
- 6. Сцинтилляционный детектор с неорганическим сцинтиллятором NaJ.
- 7. Сцинтилляционный детектор с ZnS.
- 8.Позиционно-чувствительный детектор на основе гамма-камеры

4.2.2 Самостоятельная работа студентов

Самостоятельное изучение лекционного материала по темам:

1.Вторичноэмиссионные детекторы.

Особенности работы, области применения. Схемы включения, основные режимы работы и характеристики. Микроканальные пластины.

2. Счётчики Черенкова.

Особенности и характеристики пороговых и угловых счётчиков Черенкова. Материалы радиаторов. Энергетическое и временное разрешение. Конструктивные особенности, области применения и примеры использования.

3. ПЗС-детекторы.

Принцип работы и структурная схема детекторов. Основные характеристики и области применения.

5 ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В соответствии с компетентностным подходом выпускник вуза должен не просто обладать определенной суммой знаний, а уметь при помощи этих знаний решать конкретные задачи производства.

Учитывая требования ОС НИЯУ МИФИ ВО по направлению подготовки 11.03.03 "Конструирование и технология электронных средств", реализация компетентностного подхода должна предусматривать широкое использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся.

Лекционные занятия проводятся в специализированной аудитории с применением мультимедийного проектора в виде учебной презентации. Учебные материалы предъявляются обучающимся для ознакомления и изучения, основные моменты лекционных занятий конспектируются. Отдельные темы предлагаются для самостоятельного изучения с обязательным составлением и контролем конспекта.

Практические занятия проводятся также с применением мультимедийного проектора с разбором типовых решений.

Текущий контроль знаний студентов по отдельным разделам и в целом по дисциплине проводится в форме компьютерного или бумажного тестирования, а также выполнением самостоятельных работ по решению задач.

6 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Фонд оценочных средств позволяет оценить знания, умения, навыки и уровень приобретенных компетенций. Фонд оценочных средств по дисциплине включает:

- 6.1 Комплект заданий для текущего контроля успеваемости.
- 6.2. Оценочные средства для проведения промежуточной аттестации.

7 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

7.1 Основная литература

- 1. Доломатов, М. Ю. Физико-химия наночастиц: учебник для вузов / М. Ю. Доломатов, Р. 3. Бахтизин, М. М. Доломатова. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2024. 285 с. (Высшее образование). ISBN 978-5-534-13077-5. URL: https://urait.ru/bcode/566718
- 2. Бондарев, Б. В. Курс общей физики в 3 кн. Книга 2: электромагнетизм, оптика, квантовая физика: учебник для вузов / Б. В. Бондарев, Н. П. Калашников, Г. Г. Спирин. 2-е изд. Москва: Издательство Юрайт, 2024. 441 с. (Высшее образование). ISBN 978-5-9916-1754-3. URL: https://urait.ru/bcode/559925

7.2 Дополнительная литература

- 1. Горлач, В. В. Физика: квантовая физика. Лабораторный практикум: учебник для вузов / В. В. Горлач. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2024. 114 с. (Высшее образование). ISBN 978-5-534-10137-9. URL: https://urait.ru/bcode/562508
- 2. Хренников, А. Ю. Квантовая физика и неколмогоровские теории вероятностей: учебник для вузов / А. Ю. Хренников. 2-е изд., испр. и доп. Москва: Издательство

Юрайт, 2024. — 219 с. — (Высшее образование). — ISBN 978-5-534-04355-6. — URL: https://urait.ru/bcode/561990

8 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для проведения учебных занятий лекционного и семинарского типа, групповые и индивидуальных консультаций, текущего контроля, промежуточной аттестации используются учебные аудитории, оснащенные оборудованием и техническими средствами обучения.

Учебные аудитории для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду вуза.

ТТИ НИЯУ МИФИ обеспечен необходимым комплектом лицензионного и свободно распространяемого программного обеспечения.

Сведения о наличии оборудованных учебных кабинетов, объектов для проведения практических занятий представлены на официальном сайте ТТИ НИЯУ МИФИ: http://tti-mephi.ru/ttimephi/sveden/objects