МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Трехгорный технологический институт-

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (ТТИ НИЯУ МИФИ)

КАФЕДРА ТЕХНОЛОГИИ МАШИНОСТРОЕНИЯ

	УТВЕРЖДАЮ				
Директор Т	ТИН ИТТ	У МИ	ΦИ		
	Т.И.	Улиті	ина		
« <u>26</u> »	РИОНИ	2024	Γ.		

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ «ИНТЕГРИРОВАННЫЕ СИСТЕМЫ ПРОЕКТИРОВАНИЯ И УПРАВЛЕНИЯ»

Направление подготовки: 15.03.04 Автоматизация технологических процессов и производств

Профиль подготовки: Автоматизация технологических процессов и производств в машиностроении

Квалификация (степень) выпускника: бакалавр

1 ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Основной целью, определяющей, в конечном счете, необходимость создания интегрированных систем проектирования и управления, является реализация активного управление ресурсами предприятия, что обеспечивает оперативное и эффективное решение информационных и организационных задач. В ходе изучения данной дисциплины у студентов формируется обширный набор знаний в области автоматизации и информатизации предприятий. Также создается необходимая база для успешного овладения последующими специальными дисциплинами по учебному плану. Дисциплина «Интегрированные системы проектирования и управления» способствует развитию творческих способностей студентов, умения формулировать и решать задачи в изучаемой области, творчески умения применять и самостоятельно повышать свои знания.

1.1 Цели дисциплины

Цели дисциплины «Интегрированные системы проектирования и управления» – освоение студентами SCADA-систем для проектирования автоматизированных систем проектирования, документирования, контроля и управления сложными производствами различного назначения.

1.2 Задачи дисциплины

Задачами дисциплины «Интегрированные системы проектирования и управления» является формирование базовых компетенций по разработке алгоритмического и программного обеспечения средств и систем автоматизации и управления, навыков разработки АСУТП с использованием SCADA-систем.

2 МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина «Интегрированные системы проектирования и управления» относится к дисциплинам по выбору вариативного цикла дисциплин учебного плана, изучается на 4 курсе, в 7 семестре. Дисциплина «Интегрированные системы проектирования и управления» непосредственно связана дисциплинами «Основы проектирования и конструирования», «Организация и планирование автоматизированных производств» и опирается на освоенные при изучении данных дисциплин знания и умения. Материалы данной дисциплины используются при

выполнении выпускной квалификационной работы, а также в дальнейшей практической деятельности после окончания института.

3 КОМПЕТЕНЦИИ СТУДЕНТА, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ / ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ ОБРАЗОВАНИЯ И КОМПЕТЕНЦИИ СТУДЕНТА ПО ЗАВЕРШЕНИИ ОСВОЕНИЯ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1 Перечень компетенций

Изучение дисциплины «Интегрированные системы проектирования и управления» направлено на формирование элементов следующих компетенций:

профессиональные (ПК):

- Способен участвовать в разработке практических мероприятий по совершенствованию систем и средств автоматизации и управления изготовлением продукции, ее жизненным циклом и качеством, производственный контроль их выполнения (ПК-4);
- Способен участвовать в разработке и практическом освоении средств, систем управления производством продукции, ее жизненным циклом и качеством, в подготовке планов освоения новой техники (ПК-5).

3.2 Перечень результатов образования, формируемых дисциплиной, с указанием уровня их освоения

В результате освоения дисциплины обучающийся должен:

знать:

- современные средства автоматизации и управления (3-ПК-4);
- основные кадровые документы (Устав, должностные инструкции персонала и их руководителей, правила внутреннего трудового распорядка, организационную структуру предприятия) (3-ПК-5);

уметь:

- проводить мероприятия по совершенствованию систем и средств автоматизации и управления (У-ПК-4);
- организовывать, руководить и координировать деятельностью подчиненного персонала в соответствии с требованиями должностных инструкций (У-ПК-5);

владеть:

- навыками проведения практических мероприятий по совершенствованию систем, а также проведение производственного контроля (В-ПК-4);
- организаторскими способностями для обеспечения выполнения производственных показателей (В-ПК-5).

3.3 Воспитательная работа

Направление/	Создание условий,	Использование воспитательного							
цели	обеспечивающих	потенциала учебных дисциплин							
Профессиональный модуль									
Профессиональное воспитание	- формирование чувства личной ответственности	1.Использование воспитательного потенциала дисциплин профессионального							
	за научно- технологическое	модуля для формирования чувства личной ответственности за достижение лидерства							
	развитие России, за	России в ведущих научно-технических							
	результаты	секторах и фундаментальных исследованиях,							
	исследований и их	обеспечивающих ее экономическое развитие							
	последствия (В17)	и внешнюю безопасность, посредством							
		контекстного обучения, обсуждения							
		социальной и практической значимости							
		результатов научных исследований и технологических разработок.							
		2.Использование воспитательного							
		потенциала дисциплин профессионального							
		модуля для формирования социальной							
		ответственности ученого за результаты							
		исследований и их последствия, развития							
		исследовательских качеств посредством							
		выполнения учебно-исследовательских							
		заданий, ориентированных на изучение и							
		проверку научных фактов, критический							
		анализ публикаций в профессиональной области, вовлечения в реальные							
		междисциплинарные научно-							
		исследовательские проекты.							
	- формирование	Использование воспитательного потенциала							
	ответственности за	дисциплин профессионального модуля для							
	профессиональный	формирования у студентов ответственности							
	выбор,	за свое профессиональное развитие							
	профессиональное	посредством выбора студентами							
	развитие и	индивидуальных образовательных							
	профессиональные	траекторий, организации системы общения							
	решения (В18)	между всеми участниками образовательного							
		процесса, в том числе с использованием							
	- формирование	новых информационных технологий. 1.Использование воспитательного							
	научного	потенциала дисциплин/практик "Основы							
	мировоззрения,	научных исследований", «"Учебная практика							
	культуры поиска	(научно-исследовательская работа							
	нестандартных научно-	(получение первичных навыков научно-							
	технических/практичес-	исследовательской работы)" для:							
	ких решений,	- формирования понимания основных							

критического отношения к исследованиям лженаучного толка (B19)

принципов и способов научного познания мира, развития исследовательских качеств студентов посредством их вовлечения в исследовательские проекты по областям научных исследований. 2.Использование воспитательного потенциала дисциплин/практик "Введение в специальность", "Основы научных исследований", "Учебная практика (научноисследовательская работа (получение первичных навыков научноисследовательской работы)" для: - формирования способности отделять настоящие научные исследования от лженаучных посредством проведения со студентами занятий и регулярных бесед; - формирования критического мышления, умения рассматривать различные исследования с экспертной позиции посредством обсуждения со студентами современных исследований, исторических предпосылок появления тех или иных

- формирование навыков коммуникации, командной работы и лидерства (**B20**);
- формирование способности и стремления следовать в профессии нормам поведения, обеспечивающим нравственный характер трудовой деятельности и неслужебного поведения (B21);
- поведения (B21);
 формирование
 творческого
 инженерного/профессионального мышления,
 навыков организации
 коллективной
 проектной деятельности
 (B22)
- открытий и теорий. 1. Использование воспитательного потенциала дисциплин профессионального модуля для развития навыков коммуникации, командной работы и лидерства, творческого инженерного мышления, стремления следовать в профессиональной деятельности нормам поведения, обеспечивающим нравственный характер трудовой деятельности и неслужебного поведения, ответственности за принятые решения через подготовку групповых курсовых работ и практических заданий, решение кейсов, прохождение практик и подготовку ВКР. 2.Использование воспитательного потенциала дисциплин профессионального модуля для:
- формирования производственного коллективизма в ходе совместного решения как модельных, так и практических задач, а также путем подкрепление рациональнотехнологических навыков взаимодействия в проектной деятельности эмоциональным эффектом успешного взаимодействия, ощущением роста общей эффективности при распределении проектных задач в соответствии с сильными компетентностными и эмоциональными свойствами членов проектной группы.

- формирование культуры информационной безопасности (B23)

Использование воспитательного потенциала дисциплин профессионального модуля для формирования базовых навыков информационной безопасности через изучение последствий халатного отношения к работе с информационными системами, базами данных (включая персональные

УГНС 15.00.00 «Машиностроение»:

- формирование творческого инженерного мышления и стремления к постоянному самосовершенствовани ю (В31);
- формирование культуры решения изобретательских задач **(B32)**

данные), приемах и методах злоумышленников, потенциальном уроне пользователям.

Использование воспитательного потенциала дисциплин профессионального модуля и всех видов практик для:

- формирования творческого инженерного мышления и готовности к работе в профессиональной среде через изучение вопросов применения методов программной инженерии в проектировании и создании конкурентноспособной машиностроительной продукции;
- формирования умений осуществлять самоанализ, осмысливать собственные профессиональные и личностные возможности для саморазвития и самообразования, в целях постоянного соответствия требованиям к эффективным и прогрессивным специалистам в области создания новых современных образцов технологических машин и комплексов с применением современных компьютерных CAD/CAM/CAE-,PDM- и PLM- систем через содержание дисциплин и практик, акцентирование учебных заданий, групповое решение практических задач, учебных проектов, прохождение практик на конкретных рабочих местах, ознакомление с современными технологиями промышленного производства. 2. Использование воспитательного потенциала профильных дисциплин "Теория решения изобретательских задач", "Решение инженерных задач на ПЭВМ", "Компьютерные технологии в инженерном деле" для формирования культуры решения изобретательских задач, развития логического мышления, путем погружения студентов в научную и инновационную деятельность института и вовлечения в проектную работу.

4 СОДЕРЖАНИЕ И СТРУКТУРА ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 2 зачетные единицы, 72 часа

№ п/ п	Раздел учебной дисциплины	Недели	ca pa(Виды учебно деятельности включая мостоятельность студенто часах) иминары часах	и, ую ов и	Текущий контроль успеваемост и (неделя, форма)	Аттестац ия раздела (неделя, форма)	Макс. балл за раздел
			Ле	Пр ня	Ca pa(
Семестр 7								
1	Раздел 1	1 2 3 4	2 2 2	2 2 2 2	7	КЛ1-3	KP1-4	10
2	Раздел 2	5 6 7 8	2 2 2	2	7	КЛ2-6	KP2-8	15
3	Раздел 3	9 10 11 12	2 2 2	2 2 2 2 2	7	КЛ3-10	KP3-12	15
4	Раздел 4	13 14 15	2 2	2 2 2	5	КЛ4—14	KP4-15	10
Ито	го		22	24	26			50
Заче	ет с оценкой			-				50

КЛ - коллоквиум

КР – контрольная работа

4.1 Содержание лекций

Раздел 1 <u>Предмет и задачи курса. Структура и содержание курса. Основные понятия интегрированной системы. Автоматизированные системы управления.</u>

Предмет и задачи курса. Структура и содержание курса. Основные понятия интегрированной системы (ИС), функции и структуры ИС, взаимосвязь процессов проектирования, подготовки производства и управления производством.

Автоматизированные системы управления (АСУ). Уровни АСУ. ERP-системы: назначение, функции, примеры реализации. MES-системы: назначение, функции, примеры реализации.

Раздел 2 <u>SCADA-системы, их функции и использование для проектирования АСУТП.</u>

SCADA-системы, их функции и использование для проектирования автоматизированных систем управления, документирования, контроля и управления сложными производствами.

Раздел 3 <u>SCADA-системы. Тренды, типовые алармы. События. Организация взаимодействия с контроллерами. Применение SCADA-систем.</u>

SCADA-системы. Тренды, типовые алармы. События. Организация взаимодействия с контроллерами. Связь SCADA-систем с устройствами ввода/вывода.

Применение SCADA-систем. Критерии выбора SCADA-систем.

 Раздел 4
 SCADA-система TRACE MODE. Языки программирования МЭК

 61131. Распределенная АСУТП.

SCADA-система TRACE MODE. Графический интерфейс. Алгоритмы. Языки программирования МЭК 61131 (Techno ST, IL, LD, FBD, SFC). Обмен информацией по протоколам DDE, OPC. Использование базы данных.

Распределенная АСУ ТП с использованием контроллера WinCon-8000. Модули ввода/вывода серии I-7000.

4.2 Содержание практических работ

- 1. Разработка проекта АСУТП в SCADA-системе TRACE MODE. Создание информационной базы.
- 2. Разработка проекта АСУТП в SCADA-системе TRACE MODE. Разработка алгоритмов.
- 3. Разработка проекта АСУТП в SCADA-системе TRACE MODE. Разработка встроенного графического интерфейса.
- 4. Разработка проекта АСУТП в SCADA-системе TRACE MODE. Связь контроллера со SCADA-системой TRACE MODE.
- 5. Разработка проекта АСУТП в SCADA-системе TRACE MODE. Резервирование контроллера.

6. Разработка компьютерной программы.

4.3 Самостоятельная работа студентов

Общая трудоемкость самостоятельной работы составляет 26 часов. Самостоятельная работа состоит из двух частей.

1. Самостоятельное изучение теоретического курса — 14 часов. Самостоятельное изучение теоретического курса включает самостоятельную проработку студентами некоторых тем разделов. Самостоятельно изучаемые вопросы курса включаются в вопросы к зачету с оценкой.

2. Подготовка к контрольным работам – 12 часов.

5 ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Выпускник вуза должен не просто обладать определенной суммой знаний, а уметь при помощи этих знаний решать конкретные задачи производства.

Учитывая требования ОС НИЯУ МИФИ по специальности 15.03.04 «Автоматизация технологических процессов и производств», реализация подхода должна предусматривать широкое использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся.

Лекционные занятия проводятся в специализированных аудиториях с применением мультимедийного проектора в виде мультимедиа-лекций. Учебные материалы предъявляются студентам для ознакомления и изучения, основные моменты лекционных занятий конспектируются. Отдельные темы предлагаются для самостоятельного изучения с обязательным составлением и контролем конспекта.

Практические занятия могут проводится в лекционных, компьютерных лабораториях, с разделением группы на подгруппы из 10 человек (для соблюдения принципа каждому студенту свое рабочее место), и в лабораториях цехов и отделов ФГУП «Приборостроительный завод имени К.А. Володина», имеющих специальное электрофизическое и электрохимическое оборудование и установки.

6 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Фонд оценочных средств позволяет оценить знания, умения, навыки и уровень приобретенных компетенций. Фонд оценочных средств по дисциплине «Интегрированные системы проектирования и управления» включает:

- 6.1 Контрольная работа (по вариантам).
- 6.2 Вопросы для итоговой аттестации (зачет с оценкой).
- 6.3 Тестовые материалы по разделам.
- 6.4 Материалы для оценки остаточных знаний.

7 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

7.1 Основная литература

- 1. Украженко, К. А. Инструментальные системы машиностроительных производств: учебное пособие для вузов / К. А. Украженко. 2-е изд. Москва: Издательство Юрайт, 2024. 235 с. (Высшее образование). ISBN 978-5-534-13170-3. URL: https://urait.ru/bcode/496466
- Методология проектной деятельности инженера-конструктора: учебное пособие для вузов / А. П. Исаев [и др.]; под редакцией А. П. Исаева, Л. В. Плотникова, Н. И. Фомина. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2024. 211 с. (Высшее образование). ISBN 978-5-534-05408-8. URL: https://urait.ru/bcode/515125

7.2 Дополнительная литература

- 1. Колошкина, И. Е. Автоматизация проектирования технологической документации : учебник и практикум для вузов / И. Е. Колошкина. Москва : Издательство Юрайт, 2024. 371 с. (Высшее образование). ISBN 978-5-534-14010-1. URL : https://urait.ru/bcode/519636
- 2. Куликова, Е. А. Автоматизация производственных процессов в машиностроении : учебник и практикум для вузов / Е. А. Куликова,

А. Б. Чуваков, А. Н. Петровский. — Москва : Издательство Юрайт, 2024. — 252 с. — (Высшее образование). — ISBN 978-5-534-15213-5. — URL : https://urait.ru/bcode/519893

8 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для проведения учебных занятий лекционного и семинарского типа, групповые и индивидуальных консультаций, текущего контроля, промежуточной аттестации используются учебные аудитории, оснащенные оборудованием и техническими средствами обучения.

Учебные аудитории для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду вуза.

ТТИ НИЯУ МИФИ обеспечен необходимым комплектом лицензионного и свободно распространяемого программного обеспечения.

Сведения о наличии оборудованных учебных кабинетов, объектов для проведения практических занятий представлены на официальном сайте ТТИ НИЯУ МИФИ: http://tti-mephi.ru/ttimephi/sveden/objects